State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization
نویسندگان
چکیده
State of charge (SOC) estimation is of great significance for the safe operation of lithium-ion battery (LIB) packs. Improving the accuracy of SOC estimation results and reducing the algorithm complexity are important for the state estimation. In this paper, a zeroaxial straight line, whose slope changes along with SOC, is used to map the predictive SOC to the predictive open circuit voltage (OCV), and thus only one parameter is used to linearize the SOC-OCV curve near the present working point. An equivalent circuit model is used to simulate the dynamic behavior of a LIB, updating the linearization parameter in the measurement equation according to the present value of the state variables, and then a standard Kalman filter is used to estimate the SOC based on the local linearization. This estimation method makes the output equation of the nonlinear battery model contain only one parameter related to its dynamic variables. This is beneficial to simplify the algorithm structure and to reduce the computation cost. The linearization method do not essentially lose the main information of the dynamic model, and its effectiveness is verified experimentally. Fully and a partially charged battery experiments indicate that the estimation error of SOC is better than 0.5%.
منابع مشابه
State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
Accurate state of charge (SOC) estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF)-based SOC estimati...
متن کاملAdaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model
Accurate estimation of the state of charge (SOC) of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li)-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimatio...
متن کاملOnline Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter
The lithium-ion battery is a viable power source for hybrid electric vehicles (HEVs) and, more recently, electric vehicles (EVs). Its performance, especially in terms of state of charge (SOC), plays a significant role in the energy management of these vehicles. The extended Kalman filter (EKF) is widely used to estimate online SOC as an efficient estimation algorithm. However, conventional EKF ...
متن کاملEstimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles
Estimation of state of charge (SOC) is of great importance for lithium-ion (Li-ion) batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF) and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian pro...
متن کاملA robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter
This paper presents a novel data-driven based approach for the estimation of the state of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter (AEKF). A modified second-order RC network based battery model is employed for the state estimation. Based on the battery model and experimental data, the SoC variation per mV voltage for different types ...
متن کامل